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Universal topological properties of shells in soap froth
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An analysis of the shell distribution function of two-dimensional soap froth reveals a universal
topological relation on the average number M (j,n) of sides per cell to the number of cells K(j,n) in
the jth shell of a given center cell with n sides. A plot of M (j,n)K (j,n) vs K(j,n) shows a slope of
5 for 7 = 1 and a slope of 6 for j > 2, for all samples. The results are universal for soap froths in the
scaling state with different preparations, different times, and different temperatures. A theoretical
justification is given based on general topological arguments, which are independently supported by

experiments.
PACS number(s): 82.70.Rr, 68.90.+g

Materials consisting of cellular structures such as metal
grains and biological tissues are common in nature [1,2].
Among these systems, soap froth is considered as the
paradigm for the study of trivalent two-dimensional cel-
lular dynamics. Past experimental [3—-8] and numerical
[9-12] studies of the topological properties of soap froth
are limited to the statistics of area (Lewis’s law [13], von
Neumann’s law [14], and scaling law [6]) and nearest-
neighbor correlation (Aboav-Weaire law) [15,16]. So far,
the evolution of soap froth after the scaling state can
be explained by mean field theories [17,18], indicating
that correlation effects are not manifested in the analysis
of area scaling law. However, more detailed analyses be-
yond the area scaling law have been done [19] and suggest
strongly the importance of clarifying the role of correla-
tion effects. Moreover, there has never been any experi-
mental investigation on correlation effects beyond nearest
neighbors in two-dimensional soap froth. Therefore, it is
important both for the verification of the assumptions in
mean field analysis and for the understanding of topo-
logical ordering processes in soap froth [20-25] to study
correlation effects.

Soap froths are trivalent (three edges meeting at a ver-
tex) two-dimensional cellular patterns. Phenomenlogi-
cally, soap froth admits the definition of shell distribution
function. First, we define two cells as neighbors if they
share a common edge. A cell g belongs to the jth shell
of the center cell « if it is (i) a neighbor of an element
of the (j — 1)th shell of o and (ii) not a neighbor of any
element of the k shell of « for all £k < 57 — 1. The first
shell of the center cell a with n sides consists of its n
neighbors. In Fig. 1 we show an experimental image of
a two-dimensional soap froth shell structure around the
center cell a, labeled by 0. The above definition admits
defects, as indicated by the shaded cells in Fig. 1. The
defect can be recognized as a cell that belongs to the jth
shell of a, but that has either no neighbor belonging to
the kth shell of a for all & > j or all its neighbors be-
longing to the k(> j)th shell are themselves defects as in
some pathological cases. These defects are cells that are
blocked off from outer shells [20,26].

We have analyzed data obtained from experiments
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with different conditions on soap froth. In one experi-
ment the bubble chamber mounted horizontally was en-
closed in a temperature bath whose temperature could
be varied: The temperature of the cell was changed with
different ramping rates. The experiment started with
2000 bubbles and was about 1000 bubbles when scaling
was reached. Temperature ramping started only after
the scaling state had been reached and the data we an-
alyzed are for samples before breakage. For these sam-
ples, we find that the averaged area growth rate has a
quadratic time dependence for all constant ramping rates
used [27]. Moreover, scalings in side and area are still
valid as observed in nonramping froths. In another ex-
periment [28], the bubble chamber was left at room tem-
perature and was mounted vertically for self-drainage of
fluid due to the coarsening effect of the froth. Three
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FIG. 1. Shell structure and defects in trivalent
two-dimensional froth. The defects are shaded and the num-
ber denotes the shell from the center cell labeled 0, which is
a deformed heptagon.
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cell spacings were used to study the drainage effect. The
experiment started with about 10000 bubbles and was
about 5000 when scaling was reached. A high resolution
digital charge coupled devise camera of 1037X1344 pixels
was used to enhance spatial resolutions. The experiment
shows a linear area growth rate after some drainage time
and scalings are also observed. In the above experiments,
2-3 runs were carried out for each condition and good
agreements were obtained.

From these experiments, we find a universal topological
relation on the average number M (j,n) of sides per cell
to the number of cells K(j,n) in the jth shell of a given
center cell with n sides. For j = 1, we get a linear plot
of K(1,n)M(1,n) vs K(1,n) with a slope of 4.85 + 0.05,
which agrees with the Aboav-Weaire law. We generalize
this investigation for j > 1 and get a universal slope in
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the K(j,n)M(j,n) vs K(j,n) plot for all j < 10 and
all n, as shown in Fig. 2. The universal value of the
slope is 6.00 & 0.01 when all j and n values are used for
the fitting. If we fit the slope for individual shell, i.e.,
fixing j, and obtain the slope for data for 4 < n < 9,
we get values of the slope as 6 + A(j), where A(j) is
of the order of 0.1, greater than zero for j = 2,3, and
oscillatory for larger j. The distinction of the slope for
j =1and j > 1 is universal as the observation is made
on many samples, including the same sample at different
time in the scaling state, different samples with different
gap thickness, and different samples heated at various
rates. We also analyzed the average number K (j,n) of
cells belonging to the jth shell of a center cell that has
n sides (Fig. 3). We find that K (j,n) is approximately
linear in j for all samples
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FIG. 2. Data collapse for the plot of K(j,n)M(j,n) vs K(j,n) at times (a) 2 h and (b) 14 h for constant temperature froths
[28]. (c)—(f) are temperature ramping froths [27]: (c) is at time zero, temperature at 20 °C, and ramping rate 1°C/h; (d) is
4 h, temperature at 24 °C, and ramping rate 1°C/h. (e) is at time zero, temperature at 20 °C, ramping rate 4°C/h; (f) is 1
h, temperature at 24 °C, and ramping rate 4 °C/h. Symbols: j = 1, full small circle; j = 2, open square; j = 3, full diamond;
j = 4, small open circle; j = 5, full triangle; j = 6, open circle; j = 7, full square; j = 8, open triangle; j = 9, full circle; and

7 = 10, open diamond.
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FIG. 2 (Continued).
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K(j,n) = A(n)j + B(n). (1)

The intercept B(n) depends linearly on n, but the slope
A(n) is insensitive to n. The linearity of K(j,n) vs j
plot is understandable as j is the topological distance
and K (j,n) is the circumference, which should be pro-
portional to the radius j in two-dimensional Euclidean
space.

The universal feature that M(j,n) =~ 6 can be ex-
plained by the following relation. For j > 2,

K(i—-1,n)+K(+1,n)
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FIG. 3. Number K (j,n) of cells in the jth shell of a center
cell of n sides vs 5. (a) t =2 h and (b) ¢ = 14 h for constant
temperature froths. Symbols: n = 4, open small circle; n = 5,
full triangle; n = 6, open square; n = 7, small full circle;
n = 8, open diamond.

Using the hypothesis of linear dependence of K (j,n) on
j in this relation, we get immediately that M(j,n) = 6
for 7 > 2.

We have a simple derivation for Eq. (2), assuming
that there is no defect. Let V*(j,n) be the number
of convex vertices in the jth shell of the center cell
n, and V~(j,n) be the number of concave vertices, as
shown in Fig. 4. The total number of vertices N(j,n) =
V*(j,n)+V ~(4,n) gives the total number of edges on the
outer perimeter of the jth shell. Note that the number of
convex vertices in the jth shell is the same as the num-
ber of cells in the (j + 1)th shell V*(j,n) = K(j + 1,n).
Now the total number of edges of all the cells in the jth
shell is K(j,n)M (j,n). This quantity is also the sum of
N (j,n) for the outer perimeter, N(j — 1,n) for the inner
perimeter, and 2K (j,n) for the common edges shared by
the cells in the jth shell. Next, we also observe from

FIG. 4. Definition for V*(j,n) and V (4, n).
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Fig. 4 that V*(j — 1,n) = V~(4,n), so that we have
K(j,n)M(j,n) = 2K(j,n) + N(Gj — 1,n) + N(j,n) =
4K(j,n) + K(j — 1,n) + K(j + 1,n), which is Eq. (2).

Experimentally, the linearity of K(j,n) vs j is tested
in Fig. 3, which shows some scatters for large j, but is
a good hypothesis for small j. The scatters in large j
are statistical and are due to the small number of center
bubbles with large j. In fact, our samples have finite size
and to select cells with large j implies that we are look-
ing only at the cells near the central region of the sample.
As for Eq. (2), we have tested it independently and an
error for 2[(RHS-LHS)]/[(RHS+LHS)] of less than 5% is
observed (where RHS and LHS denote right- and left-
hand side, respectively). For all samples that include
different temperatures, times, thickness of the gap spac-
ing between the plates that confine the two-dimensional
froth, and different shells in a given sample, there is data
collapse in the K (j,n)M(j,n) vs K(j,n) plot.

We will present analyses of data related to the topolog-
ical charge and the idea of topological correlation length
to separate dynamical correlation from geometric corre-
lation in a different paper [19]. These analyses will shed
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some light on the observations of small and systematic de-
viations of M (j,n), as manifested in A(7) in the fit for in-
dividual shell. The smallness of the deviations from 6 can
be related to the presence of a small density of defects,
which introduces small corrections to Egs. (1) and (2).
These deviations are systematic and are distinct from the
voronoi construction of trivalent two-dimensional froth
based on a random gas or perturbed hexagons. Never-
theless, the result M(j,n) = 6.0 for j > 2 in soap froth
is universal, indicating that the assumption of negligi-
ble correlation effects beyond nearest neighbors is a good
approximation. The importance of these experimental
results will be seen in the shell model analysis of the
topological properties of froths [19,20], as well as in the
theories of evolution of froths [17,18] when more experi-
mental features are to be explained.
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FIG. 1. Shell structure and defects in trivalent
two-dimensional froth. The defects are shaded and the num-
ber denotes the shell from the center cell labeled 0, which is
a deformed heptagon.



